土質試験
1.液性限界・塑性限界試験
液性限界・塑性限界とは?
土は、水分量の違いによって、液状(ドロドロ)、塑性状(ベタベタ)、半固体状(ボロボロ)、固体状(カチカチ)に変化します。液状と塑性状の閾値となる含水比を液性限界、また塑性状と半固体状の閾値を塑性限界と呼びます。このような状態変化、つまり硬さ・軟らかさ、流動性の程度はコンシステンシーと呼びます。土の工学的性質は、砂や礫の場合は主に粒度特性が寄与しますが、より細かい粒子を多く含むシルトや粘土では、コンシステンシーも大きく影響しています。
土の4つの状態とコンシステンシーを表す指標
液性限界試験の方法
③ やがて溝の両側から土が膨らんできて、溝が閉じていきます。1.5cm閉じた時点で、打撃をやめて回数を記録します。また、試料の含水比を測定します。
①~③までを試料に水を段階的に加えながら、繰返し行います。
落下回数と含水比の関係を描きます。25回のときの含水比を読み取り、これを液性限界とします。
塑性限界試験の方法
コンシステンシーを指標にした土の工学的分類
土を決められた方法で工学的に分類することにより、どのような性質を持つ土であるか適切に言い表すことができます。この分類の方法では、粒径やコンシステンシーを指標にします。
一般に、まず粒径をもとに粗粒土と細粒土に大きく分類できます。粗粒土は、さらに礫質土と砂質土に分類されます。一方、細粒土は、観察をもとに粘性土、有機質土、火山灰質粘性土に分けられます。このうち粘性土は、コンシステンシーをもとに描かれた塑性図を使って、さらに細かく分類します。塑性指数が高いほど、粘性が高いことに着目した分類方法で、図中の4つの領域のどこに位置するか調べることにより分類できます。
粘性土を分類するための塑性図
2.土粒子の密度試験
土粒子の密度とは?
土は、土粒子、水、空気から構成されています。このうち、土粒子の密度を測る方法を説明します。土粒子の密度がわかれば、土の乾燥質量を測定することにより、土粒子の体積が求められます。すると、土が間隙(水と空気の部分)をどのくらい含むか、また間隙に占める水の割合(飽和度)がどのくらいか、といったことがわかります。これらは、強度や水の透しやすさといった地盤の工学的な性質を考える上で重要な指標です。
土粒子の密度ρsは、土の乾燥質量msをその体積Vsで割れば求められます。土粒子はさまざまな鉱物や有機物からできており、土によってこれらの組成が異なるため、土粒子の密度は異なる値を示します。
土粒子の密度の測定方法
③ 容器に蒸留水を追加して、充填し質量mbを測定します。また、この容器に蒸留水だけを入れた状態でも質量maを測っておきます。試料は、乾燥炉で乾かし、乾燥質量msを測ります。
すると、試料の水中重量は、mb-maで求められます。そして、これとmsとの差は土粒子にはたらく浮力であり、すなわち土粒子の体積Vsを求めることができます。
土の種類と土粒子の密度
土粒子の密度はどのくらいなのでしょうか。代表的な鉱物の密度と、これらからなる土粒子の密度を図にまとめました。鉱物の密度は、磁鉄鉱はかなり重いですが、大半は2.7g/cm3前後です。したがって、これらが混合してできた無機質土の土粒子の密度は、2.6~2.8g/cm3あたりの狭い範囲に分布します。これに対して、黒ぼくや泥炭といった腐食した植物などの有機質を多く含む土は、軽い特徴があります。また火山噴出物からできた、しらすも軽い傾向を示しています。
鉱物の種類と土粒子の密度 地盤材料試験の方法と解説(地盤工学会)をもとに作成
3.含水比試験
含水比とは?
土の状態は、水分量によって、ドロドロ、ベタベタなど、さまざまな状態に変化します。そのため、水分量は、土の状態を定量的に評価する上で重要な指標となります。特に工学的には、水分量は強度や地盤内の水の透しやすさと密接に関係しているため、必須の測定項目です。
土は土粒子、水、空気からできています。水分量の表し方にはいくつかありますが、含水比wは土粒子の質量に対する水の質量の比で定義される量です。
w=mw/ms
土を構成する三つの成分
土粒子の密度の測定方法
土の種類と含水比
土の含水比はどのくらいなのでしょうか。いくつかの土の含水比を図にまとめました。沖積粘土、洪積粘土、関東ロームは、細かい土粒子から構成されています。黒ぼくや泥炭も細かい土粒子から構成されますが、腐食した植物などの有機質を多く含んでいるという特徴があります。これらに対して、まさ土やしらすは、より粗い土粒子で構成されています。まさ土は風化した花崗岩、しらすは火山噴出物からできた土で、南九州などに分布しています。
これらの土の含水比を比べると、まさ土やしらすはあまり水分を含まない傾向が見られます。一方、黒ぼくや泥炭は非常に多く水分を含んでいます。このように、種類が異なる土の性質のちがいは、含水比にも表れています。
土の種類と含水比 地盤材料試験の方法と解説(地盤工学会)をもとに作成
土の強度と含水比
はげしい雨によって山地や土構造物の斜面が崩れるといった被害をよく耳にします。これは、土が水分を含むことによって重たくなって斜面をすべろうとする力が増すのと同時に、これを引き留めようと抵抗する力が弱くなり、限界に達したときに起こります。特に、抵抗力すなわち強度の低下が崩壊の要因となっています。
土の強度の一部は、土粒子間の間隙にある水分に起因しています。水分には表面張力が作用する結果、負圧が発生していて、土粒子同士をくっつける接着剤の役割を果たしています。しかし、土粒子間の間隙を占める水分が多くなると、負圧は消失して接着効果が弱まります。このようなメカニズムで土の水分量は強度に影響しています。
水分量から強度を推定するため、さまざまな方法が研究されています。これを精度よく推定する方法が開発されれば、降雨のモニタリングから斜面の安全性を予測し、被害を減らすことができると考えられます。
斜面崩壊のメカニズム
4.粒度試験
粒度とは?
土はさまざまな粒径の土粒子からできています。土の強度や透水性は、どのような粒径がどのくらい含まれているか(粒度分布)で、大きく異なります。粒度分布は、粒径加積曲線とよばれる曲線で表されます。縦軸の通過質量百分率は、横軸の粒径のふるい目を通る土粒子の割合を質量ベースで表しています。たとえば、下図の段丘礫層であれば、2mmよりも粒径の小さいものが約70%程度入っています。一方、他の3種類の土は、すべて2mm以下の粒径のもので構成されていることがわかります。特に、0.075mmを通過質量百分率は、細粒分含有率(FC)と呼ばれ、粒度の特徴を表す指標のひとつとなっています。海成粘土は、FC=95%程度、稲城砂と段丘礫層はFC=20%程度、豊浦砂は細粒分を含んでいません。
代表的な土の粒径加積曲線の例 地盤材料試験の方法と解説(地盤工学会)
粒度の測定方法
② 沈降分析では、メスシリンダーに試料と蒸留水を加えて十分攪拌した懸濁液の密度を測定します。測定中の温度を一定に保つため、メスシリンダーは恒温水槽に入れ、攪拌した直後から24時間後までの間の所定の時間に計8回測定します。密度は、懸濁液に浮ひょうを浮かべて、水面位置の目盛りを読むことで測れます。時間の経過とともに粒径の大きい粒子から順に沈降し、懸濁液の密度が低下します。
浮ひょう密度理論とストークスの法則に基づいた計算式を用いて、懸濁液の密度から、浮ひょう重心位置にある土粒子の粒径と、それより細かい粒子の質量を求めることができます。ふるい分析の結果と合わせて、粒径加積曲線を描きます。
粒径を指標にした土の工学的分類
土を決められた方法で工学的に分類することにより、どのような性質を持つ土であるか適切に言い表すことができます。この分類の方法では、粒径やコンシステンシーを指標にします。
一般に、まず粒径をもとに粗粒土と細粒土に大きく分類できます。細粒土は、観察をもとに粘性土、有機質土、火山灰質粘性土に分けられ、さらにコンシステンシーを指標に細かく分類します。一方、粗粒土は、粒度試験で得られた礫と砂の比率から礫質土と砂質土に分類でき、さらに細粒分の比率も加味して、細かく分類されます。
粒度分布に基づく液状化の予測
粒径やコンシステンシーは、土を工学的に分類する上で必要ですが、これらは地盤の液状化に対する危険性を判断する上でも重要な指標となります。液状化は、一般に、地下水位の高い砂質地盤で発生します。
たとえば、道路橋示方書・同開設 Ⅴ耐震設計編((社)日本道路協会、2012)では、地下水位、細粒分含有率、50%粒径(通過質量百分率が50%となる粒径)、10%粒径、塑性指数を指標にした判定方法が提案されています。この手順で、液状化の可能性が高いと判断された場合は、これらの指標を使って、繰返しの揺れに対する地盤の強度と、地震の揺れの大きさの比をとって、液状化に対する安全率を推定します。
5.圧密試験
圧密とは?
地盤に上載圧が作用すると、体積が圧縮しますが、空気が抜けて圧縮する場合と水が抜けて圧縮する場合があります。このうち、後者の場合、特に地盤の透水性が低いために時間遅れを伴う圧縮現象を圧密と呼びます。盛土や建築物を造る場合、どの程度地盤が沈下するのか、どのくらいのスピードで進行するのかを適切に評価し、管理することが重要です。
土の圧密特性の評価方法
圧密試験の結果
圧密試験の結果は、右図のようなe-logp曲線という図面で整理されます。縦軸に各載荷段階での間隙比e、横軸に圧密圧力pを対数軸表示したものです。ここで、曲線の折れ曲がりが見られるところの圧密応力は、圧密降伏応力pcと呼ばれます。pcは、その地盤が過去に受けた最大応力に相当する場合が多いと言われています。pcよりも小さい応力下(過圧密状態)では、弾性的な変形をしますが、pcよりも大きい応力下(正規圧密状態)では、塑性的な変形をすることが特徴です。正規圧密領域でのe-logp曲線の傾きは、圧縮指数Ccと呼ばれます。Ccは地盤に作用する上載圧によってどれだけ圧縮するかを表すもので、地盤の沈下量を推定するのに必須のデータです。
また、各載荷段階のデータからは、圧密の速度を表す、圧密係数Cvが得られます。圧縮性に富み、透水性の低い地盤では、Cvは小さく、圧密沈下が落ち着くまでに時間を要します。
e-logp曲線 地盤工学用語辞典(地盤工学会)
6.一軸圧縮試験
一軸圧縮強さとは?
土のせん断強度を表す指標には、いくつか種類があります。このうち一軸圧縮強さは、円筒状に成形した土を長軸方向に圧縮したときに発揮される圧縮応力の最大値で定義されます。比較的測定が簡易なため、よく用いられる指標です。
一軸圧縮強さの測定方法
② 成形した供試体を一軸圧縮試験装置にセットします。装置は、圧縮装置、加圧板、荷重計、変位計から構成されます。
供試体の圧縮ひずみが毎分1%(すなわち1mm)となるように、圧縮速度を調整し、圧縮を開始します。以下の3つのいずれかの条件を満たしたときに、試験を終了します。
- 圧縮力が最大値に達してから2%以上のひずみが生じる
- 圧縮力が最大値の2/3程度まで低下する
- 圧縮ひずみが15%に達する
一軸圧縮強さの利用
土のせん断試験では、せん断力を載荷する前に圧密(時間遅れを伴う土中からの排水による圧縮変形)するか否か、またせん断中の供試体からの排水の有無によって、得られる強度が異なり、利用目的によってこれらの条件を変えて試験が行われます。一軸圧縮試験は、非圧密・非排水条件で行われる試験です。この条件は、例えば、盛土を施工する場合の地盤の安定性を評価する問題で考えると、透水性の低い粘土地盤に急速に盛土を施工する場合に相当します。盛土荷重がかかるスピードに比べて、地盤から水が抜けるスピードが遅く、実質的に地盤には、非圧密・非排水条件でせん断荷重が作用するので、間隙水圧の上昇に伴って、有効応力(土骨格に正味働く応力)が減少します。
ただし、一軸圧縮試験は、土試料のサンプリング・運搬時や、供試体成型時の乱れの影響を受けやすいので、得られる一軸圧縮強さが過小評価となっている可能性がある点に注意が必要です。